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                                      ABSTRACT 

Nowadays, satellites with rigid and flexible components are increasingly being extended to advanced 
applications, where solar panels, communication antennas, telescopic structures and robotics arms must 
achieve better pointing accuracy requirements. On the other hand, the guaranty of the controller 
performance depends not only on its good design but also on the knowledge of all states to be fed-back in 
order to improve the overall control system efficiency. As a result, control system design methods that 
include parameters identification and/or states estimation need more investigation to know their capability 
and limitations. In this paper, a Kalman filter methodology is used to recover the unmeasured states 
(elastic displacement and its rates) considering that only the states associated with rigid motion are 
measured (angle and angular velocity). In order to investigate the robustness of the filter, the Kalman filter 
methology is tested with a satellite model compose of one, two and three flexible modes.  One observes 
that the fidelity of the estimation process increase with the inclusion of more modes in the satellite model, 
which in turn not affect the performance of the Kalman filter procedure. 

 
 

Introduction 
 
The use of small satellites has been a fast, simple 
and low cost way of reaching the space in 
missions with the most several applications1, 2, 
however, in order to conquer the space it is 
necessary to launch spacecraft that involves 
rigid/flexible structures. These missions are 
more complex because the satellites have a great 
number of components like, solar panels, 
antennas, cameras and mechanical manipulators. 
As a results, the influence of the flexibility of 
such structure play a important role in the 
dynamics behavior as well as in the performance 
of the Attitude Control System (ACS)3. Others 
important aspects in the study of the dynamics 
and control of flexible space structures are: the 
degree of interaction between the rigid and 
flexible motion, maintenance of the ACS 
performance in face the uncertainties of the  

 
 
 
mathematical model, damping residual 
vibrations in order to keep pointing precision 
and dynamic parameters identification.4 This 
paper presents an estimation procedure using the 
Kalman Filter methodology in order to estimate 
the elastic displacement and its rate in space. 
Section 2 presents a mathematical model of a 
simple spacecraft based on a flexible Euler-
Bernoulli beam connected to a rigid hub. The 
equations of motion are derived using the 
Lagrange approach, where noise is introduced to 
corrupts the input and the angles and angular 
velocities, which are the outputs of the system. 
Section 3 presents the Kalman filter estimation 
algorithm. Section 4 presents the simulation 
where the Kalman filter is tested considering the 
satellite model with one, two and three flexible 
modes. Section 5 concludes the paper.  
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Spacecraft Mathematical Model 
 
The satellite mathematical model used is 
composed of a rigid platform with two flexible 
appendixes and masses in the extremities of the 
appendices. The appendices are identical and 
opposite, being considered as beam connected to 
the platform, and subjects to rotational and 
vibrational motion. In order to derive the 
equations of motion for this model, one applies 
the Lagrange methodology, starting from the 
expression of the kinetics and potential energy of 
the system. Fig. 1 illustrates the system 
composed by rigid hub and an elastic appendage. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
FIGURE 1. SATELLITE MODEL COMPOSED BY A RIGID 
HUB AND AN ELASTIC APPENDAGE. 

 
One considers that the inertial reference system, 
coincides with the origin of the fixed reference 
system in the rigid body and it is represented by 
the axes n1, n2, n3. The fixed reference system in 
the rigid body coincides with the center of mass 
of the rigid body, which is characterized by the 
axes b1, b2, b3. The vector r represents the radius 
of the rigid body. The vector x represents a 
position of a measured mass element along the 
appendix in the no deformed form, in relation to 
the appendage reference system. R gives the 
vector position of any point in the appendage 
relative to the inertial reference system. The 
vector of elastic displacement (elastic 
deformation) measured perpendicular to the axis 
b1 is represented by y (x, t). Therefore, the vector 
position of any point in the deformed appendage 
form, relative to the inertial reference system is 
given for:   
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and its velocity vector is  
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Considering that θ&  is the satellite angular 
velocity and substituting Eq. (1) into (2), one has  
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Equation of Motion 
 

The total kinetics energy of the system is 
given by  
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where hJ  is the rotary inertial of the hub, ρ  is 
the mass density of the appendages, L is the 
length of the appendage and y(x,t) represents the 
elastic displacement.  

The total potential energy V is considered as 
entirely due to the elastic deformations of the 
system and it is given by    
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where E represents the module of elasticity 
(module of Young) and I the moment of inertia 
of the beam. The discretization of the system is 
done using assumed mode method.5 Therefore, 
the elastic displacement y(x,t) is substituted by 
 

( ) ( ) ( )tqxt,xy
N
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jij∑ φ=                           (6) 

 
where φj(x) is the admitted functions and qji(t) 
are the generalized coordinates. The equations of 
motion are found for the rotation ( )tθ  and 
elastic ( )tq  motion, using the Lagrange 
formulation 
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where Fi is the generalized force, and xi is the ith 
element of the vector (x). 

Substituting the kinetic and potential energy 
expression into Eq.(7) and after some 
manipulation the equations of motion in the 
matrix form is given by                                  
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where Ĵ is the total inertia moment of the 
system, qM θ represents the sub-matrix associated 

with the rigid and flexible motion, qqM  

represents the sub-matrix associated with the 
flexible motion and qqK  represents the sub-

matrix associated with flexible body.  Eq.(10) in 
compact form is given by  
 

uDxKxM =+
��

                                        (11) 
 

where M is the mass matrix,  K is the stiffness 
matrix of the system and D is the control 
influence matrix.5 Eq.(11) in state space modal 
form is given by 
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where M~ , C
~

, K~ and D~ represents mass, 
damping, stiffness and control influence matrices 
in modal form, respectively.  
 
 

Kalman Filter Estimation Algorithm 
 

The Kalman filter computational algorithm 
containing a sequence of time and measurement 
updating in order to estimates of the system 
state.6 The filter can incorporate dynamic noise 
in the dynamical model of the state. It is a real 
time estimator supplying the estimates for the 
instant that the measurement is available. The 
filter consists of two cycles:   
 

• Time update 
 
• Measurement update   

 
The complete dynamical model is given by: 
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where T

1 ],[ ηη=η �  is the modal coordinates, ω  is 
white gaussian noise, G is matrix unitary.       

The matrix A is the system matrix that relates 
the state linearly by 
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The measured model is given by: 
 

ν+η= 1CY           (14) 
 
the output is the angle θ  and angular velocity θ� , 
with standard deviation of  0.05° and  0.005°/s, 
respectively. The matrix is C=BT . The term ν  
represents a white noise vector with the 
following static 
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In the time update, the states are estimates using 
 

xAx =
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            (15) 
 
with initial conditions 1k1k x̂x −− = , and the 
covariance is computed by 
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with initial conditions 1k1k P̂P −− = . Eq.(16) is 
known as Riccati equation.  

In the measurement update the states and 
covariance matrix are calculated by  
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where K represents the Kalman gain, and P  and 
x̂  are the covariance and the state updated.  
 
The errors between the actual state and the 
estimated state is  
 

iii x̂x −=ε∆            (20) 
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Simulations 
 

The aim of the simulations is to implement and 
test the proposed Kalman filter methodology for 
estimation of the flexible mode (elastic 
displacement) considering that the rigid motion 
of satellite (angle and angular velocity) is 
available. The analysis is performed using Eq. 
(13) to Eq. (19), finding the error by Eq.(20). 
The simulations were carried out by 
computational implementation of the software in 
Mat lab language. 
 
The structural parameters used in the simulations 
are: radius r = 0.3048m, density ρ=47.89Kg/m, 
damping 2.0=ς , L = 1.2192m, E = 7.735x109 
Kg/m2 , I= 1.293x10-10 Kg*m2  Jh = 10.84 
Kg*m2. The Kalman filter parameters and the 
initial conditions used given in table 1. 

 
 

TABLE 1. INITIAL CONDITIONS AND TUNNED 
PARAMETERS OF THE KALMAN FILTER 

 
Symbol Initial  

Values 
Symbol Initial  

Value 
Symbol Initial  

Value 
G I4 

θ#P (0/s)2 (10)2 

θ$Q (0/s)2 10-6 

θR   (0)2 (0.05)2 

0θ  (0) (0.1) Pθ       (0)2 (10)2 

θ$R (0/s)2 (0.005)2 

0θ&  (0/s) 
(0.01)  qQ % ( 0/s)2 10-8 

θQ  (0)2  
10-6 qQ  (0)2 10-8 

q,qP & (0, /s)2 (10)2 

 
The investigation philosophy is check first the 
behavior of the measurement residuals on θ  and 
θ& . After that, the robustness of the filter is 
verified increasing the order of the system. This 
is, the simulation has been done comparing the 
elastic displacement with a satellite model with 
one, two and three elastic modes.   
 
Figure 2 shows the behavior of the measurement 
residuals on θ  and θ&  for satellite with one 
mode. In this case the residuals are in good 
shape with one standard deviation around 0.1° 

and 0.01°/s, respectively.   
 

Figure 3 shows the difference between the 
ideal state and the estimate state the “error” 
for the satellite model with one, two and 
three modes. It can be seen that angular 

velocity estimated, remains in all modes, 
under the limits of standard deviation. But 
for the angle it is necessary 50 seconds for 
the filter to adapt and have a good 
performance.  
 

 
Figure 2 - the behavior of the measurement 
residuals on θ  and θ& . 

 
Figure 4 shows a significant difference between 
the model with one and two modes in the 
flexible coordinate q1 and q2. However, that 
difference is negligible for the model with two 
and three modes, which means that the satellite 
can be modeled at most with two modes without 
lost of accuracy. This is correct because, when 
more modes are included, the dynamics of the 
system tend to stationary values. 
 

 
Figure 3 the error for the satellite model with 
one, two and three modes. 
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Figure 4 Estimation elastic displacement q1, q2. 
 

 
Conclusions 

In this work a satellite composed of a central 
rigid body and two flexible appendages was 
mathematically modeled to be used in an 
estimation methology based on Kalman filter. A 
Lagrangian formulation was used to derive the 
equations of motion of the satellite. The 
discretization of the elastic displacement was 
performed by the assumed mode method. The 
estimation of the elastic displacement was done 
for a satellite model with one, two and three 
modes. It was observed that the fidelity of the 
estimation process increase with the inclusion of 
more modes in the satellite model, without 
affecting the performance of the Kalman filter 
procedure. Having in mind the complexity of 
putting a sensor on the elastic parts of the 
satellite, the application of the Kalman filter 
methology has been showed a good approach to 
estimate indirectly the flexible parameters of a 
rigid-flexible satellite. That approach becomes 
more promising when it is necessary to feedback 
the elastic measurements into the control system 
in order to assure better pointing conditions 
and/or better system performance. Therefore, 
being an important tool in the estimation of 
estates in orbit. 
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